
Deepak Abhyankar, Maya Ingle / International Journal of Engineering Research and Applications
(IJERA) ISSN: 2248-9622 www.ijera.com

���Vol. 1, Issue 3, pp.446-448
�

446 | P a g e
�

�

��

Elements of Dynamic Programming in Sorting

Deepak Abhyankar* Maya Ingle**

 * Lecturer School of Computer Science, Devi Ahilya University Indore India
 ** Prof. School of Computer Science, Devi Ahilya University Indore India

Abstract

 Dynamic programming is an effective algorithm design method. Sorting is believed to be an unusual area for dynamic
programming. Our finding is contrary to this conventional belief. Though it appears that classical sorting algorithms were designed using
bottom up design approach, but we have found the evidence which suggests that some classical sorting algorithms can also be designed
using Dynamic programming design method. Even the development of classical Merge algorithm shows elements of dynamic
programming. This paper finds that development of sorting algorithms can be looked from an entirely different point of view. This work
will reveal some new facts about the design or development of some key sorting algorithms. It was discovered that this new interpretation
gives a deep insight about the design of some fundamental sorting algorithms.

1. Introduction

 Dynamic programming is the most fundamental algorithm design approach and sorting is a principal computer science
problem. Surprisingly Dynamic programming paradigm is absent from the majority of the sorting literature [1, 2, 3, 4]. On the other
hand Divide and Conquer deservingly receives the credit for the development of quick sort and merge sort. Divide and Conquer is a
great algorithm design paradigm and we have nothing against it. Some key sorting algorithms can be shown to have the elements of
dynamic programming. This study shows that Dynamic programming has a role in the development of key sorting algorithms. It was
observed that Heapsort and Insertion sort definitely show the aspects of dynamic programming. These sorting algorithms are such a
perfect and clean instances of Dynamic programming design method that it is an arduous task to recognize the elements of Dynamic
programming in their design. Our study seems to have developed valuable insight about sorting and Dynamic programming.

2. Dynamic Programming and its Applicability

 Dynamic programming paradigm is the cornerstone of the algorithm design theory. It has been applied in a wide variety of
situations. Dynamic programming solves problems by combining the solutions to sub problems. Divide and Conquer works in a similar
way. Difference lies in the nature of sub problems. In the case of Divide and Conquer sub problems are independent but Dynamic
programming combines overlapping sub problems. Overlapping sub problems is the litmus test for the applicability of Dynamic
programming [4].

3. Dynamic Programming and Heapsort

 Heapsort is one of the influential sorting algorithms. There are three critical routines (Heapify, BuildHeap and Heapsort) in
Heapsort algorithm[4]. Dynamic programming seems to be present in the Heapify routine. Here we present a version of Heapify where
dynamic programming is apparent.

 void Heapify(Data* a, int i)
 {
 if(a[i].Heap==0)
 {
 int l = Left(i);
 int r = Right(i);
 int largest=i;
 if(l<=HeapSize)
 {
 Heapify(a,l);

http://www.ijera.com/

Deepak Abhyankar, Maya Ingle / International Journal of Engineering Research and Applications
(IJERA) ISSN: 2248-9622 www.ijera.com

���Vol. 1, Issue 3, pp.446-448
�

447 | P a g e
�

 if(a[l].Info>a[i].Info))
 largest = l;
 }
 if((r<=HeapSize)
 {
 Heapify(a,r);
 if (a[r].Info>a[largest].Info))
 largest = r;
 }
 if(largest!=i)
 {
 swap(a,i,largest);
 a[largest].Heap=0;
 Heapify(a,largest);
 }
 a[i].Heap=1;
 }
 }

 It was observed that routine Heapify contains overlapping subproblems which directs us towards Dynamic programming
paradigm. If we use bottom up dynamic programming we will end up designing classical Heapify function which is quite efficient.

4. Dynamic Programming and Insertion Sort:

 Insertion Sort is an effective sorting algorithm for sorting small size arrays. We find that Insertion sort is a cleanest application
of Dynamic programming. Here we start with a recursive sorting algorithm and after refinements we will arrive finally at classical
Insertion sort algorithm. It is interesting to note that following recursive algorithm can be transformed into the tiniest sorting algorithm
[5].

 void Sort(int* a, int n)
 ` {
 if(n>0)
 {
 Sort(a,n-1); // Statement A
 if(a[n]>=a[n-1]) return;
 swap(a,n-1,n);
 Sort(a,n-1); // Statement B
 }
 }

 It can be observed that statement A and statement B leads to an overlap of very high degree. That forces us to apply dynamic
programming.

 void Sort(Data* a, int n)
 {
 if(n>0)
 {
 if(a[n].Sorted!=1)
 {
 Sort(a,n-1); // Statement A
 if(a[n]>=a[n-1])
 {
 a[n].Sorted=1;
 return;
 }
 swap(a,n-1,n);
 a[n-1].Sorted=0;
 Sort(a,n-1); // Statement B
 a[n].Sorted=1;

http://www.ijera.com/

Deepak Abhyankar, Maya Ingle / International Journal of Engineering Research and Applications
(IJERA) ISSN: 2248-9622 www.ijera.com

���Vol. 1, Issue 3, pp.446-448
�

448 | P a g e
�

 }
 }

 }

 It was found that routine sort involves overlapping sub problems which dictate us towards dynamic programming paradigm. If
we use bottom up dynamic programming we will finish up designing classical Insertion Sort function which is quite efficient.

5. Results

 We find that Dynamic programming has the potential to design elegant sorting algorithms. In fact this paper shows that Heap
sort and Insertion sort can also be designed using dynamic programming method. Same can be shown true for Tree Selection sort. It is
evident from above mentioned algorithms that if return type of a function is void bottom up dynamic programming approach will require
lesser amount of memory because lookup table will be eliminated. Lookup table will still be present in the top down approach. Both the
Heap Sort and Insertion sort are in place sorting algorithms which are contrary to the folk belief that dynamic programming may be
memory consuming.

6. Conclusion

 Though in the past Dynamic programming did not take any credit for the development of Heap sort or Insertion sort the prior
deserves a lot more. Evolution of algorithms is an understudied area where future work can produce a lot of surprising results. We believe
that more algorithms belong to the dynamic programming than it is actually credited with. Last but not the least if return type of a
function is void and applicability of dynamic programming exist then we will get elegant memory efficient solutions.

References

[1] D. E. Knuth, The Art of Computer Programming, Vol. 3, Pearson Education, 1998.

[2] S. Baase and A. Gelder, Computer Algorithms:Introduction to Design and Analysis, Addison-Wesley, 2000.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of computer algorithms. Addison-Wesley, 1974.

[4] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Intoduction to Algorithms, 2nd ed. MIT Press, 2001.

[5] M. D. Mcilroy, The tiniest C sort function?, www.cs.dartmouth.edu/~doug/tinysort.html

http://www.ijera.com/

